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SUMMARY

The semieMPiricalmethod of dealing with shields by treating them
as composed of layers is revised and extended by taking the angular dis-
tribution of the radiation into account and by making use of the trans-
port equation. It is shown that-breakingup the ranges of direction
and ener~ of radiation into finite intervals is appropriate where mul-
tiple scattering with angular deviation does not dominate, aud a pro-
cedure is given for using data referring to very thin layers to calculate
the parameters for finite layers in this case. In the contrary case
where multiple elastic scai%ering is dominant, it is shown that the num-
ber of unlmowns to be considered is decreased if the angular distribution
is represented by an appropriate expansion in terms of Legendre poly-
nomials and the Laplace transformation of the coefficients is taken with
respect to energy. The method is ilhstrated by consideration of the
effect upon neutrons of a thick nonabsorbing shield of high atomic weight.
The physical si@ificance of the new vsriables thus introduced is
determined.

INTRODUCTION

Shielding is accomplished by interposing a material barrier between
a source of radiation and the region to be protected. In passing through
the shield, the particles making up the radiation (which may contain
particles of zero mass such as photons) uhdergo collisions with the
atoms of the shield. In a given collision, a particle may lose some
portion of its ener~ while simultaneously changing direction and may
also generate new particles. The probability of a particular type of
collision depends upon the ener~ of the particle before the colLision
and, hence, upon its past history; the number of collisions a particle
undergoes within the shield depends Won its length of path in the
shield and, hence, on its original energy and the geometry of its tra-
jectory. In general, therefore, the psrticles leaving the shield wilL
be of several types and will cover a large range of energies and direc-
tions. The complexity of the problem makes the solution of the mathe-
matical equation governing the travel of the particles through the
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2 IWCA TM 2647

shield (the transport equation) quite clifficult. However> the l=ge
number of possible processes makes the use of composite shields seem
particularly promising. For example, the first section of a shield
might slow the particles down sufficiently that the second section cotid
a%sorb them. This means that to find the most efficient shield for a
given source many codxinations of materials must be considered. ?3ecause
of the difficulties of calculation, direct measurement seems the proper
procedure for comparing these cotiinations,but to try all the possi-
bilities would require a large volume of experimentation.

In order to avoid both the need for elaborate computation and for
large-scale experimentation,13cbrowsky(reference1) proposed a method
(hereti designated as semiempirical)for predicting the effectiveness
of composite shields on the basis of actual measurements made upon a
relatively smslllnumber of homogeneous shields. The basic idea pre-
sented in reference 1 is to treat the shield the effect of which is to
le computed as being built up of a number of layers or elements upon
each of which the required measurements of shielding effectivenesshave
been made. The results of such measurements serve to relate the distri-
bution h direction, energy, and surface position of the particles leav-
@ any element to the distribution in direction, ener~, ad surface
position of those entering the element. If the individual elements are
combined to form a composite shield, the same relations as before hold
between the distribution of particles entering a particular element and
the distribution of those leaving that element. Except for the front

. face of the first element and the back face of the last element, however,
the incident fluxes are unknown. Thus, in the ca8e of n elements and
p species of particles, there are 2np unknown functions describing
the emergent fluxes, one for each species of psxticle at each of the
two faces of each element. When these fluxes are connected with one
another and with the incident flux, there result ~p integal equa-
tions which are, however, of a relatively simple structure.

Briefly, the procedure which has been used by Ibbrowsky is to
approximate the integrals in question by appropriate Sumsy usualJy
with the additional assumption that the incident flux is independent
of surface position. The intensity is thus no longer expressed in
terms of a function of direction and energy but instead is expressed
in terms of a set of nunibers,each of which is the average value of the
intensity within the appropriate range of.ener~ and of angle. (Actu-
alJ-Y,Wbromb suppressed the sngukr dependence by assuming a13
particles to travel in a single tiection.) Thus, the set of integraJ-
equations in the unlmown titensity functions is replaced by a set of
ordinary algebraic equations in the intensity nunbers. me solution
of these can be accomplishedby ordinary methods. In practice, however}
the computation may be quite tedious because of the large number of
mknowns involved.jin addition, the amount of experimental data required
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l?ACATN 2647 3

may still be excessive. ‘I!bisis especially the case if considerable
accuracy is desired and, consequently, the intervals of angle and
energy are narrow.

The present work, which was conducted at the NACA Lewis laboratory,
is directed toward extending and shplifying the semiempirical.method.
The first step toward accomplishing these objectives is the determina-
tion of approximate solutions of the trausport equation for two special
conditions: first, that in which”multipleelastic scattering dominates;
and second, that h which the role of multiple scattering with change
in direction is small.compared with other effects. The results obtained
serve three purposes: (1) They demonstrate the importance of taking
into account the direction of motion of the p-ides; (2] they provide
a means for calculating the effect of any element which is not too thick
and in which multiple elastic scattering is not too important an effectj
from the results of measurements on an infinites= element of the same
material; and (3} they suggest a way of simplifying the comptiations
necessary in the application of the semiempiricalmethod.

In order to generalize this method to include the effects of augular
dependence and to achieve the simplificationmentioned, the integral
equations displaying th”esmgulsr dependence of the intensity are first
written down. These equations are to be treatedby appro-ting the
integrals by sums smd solving the resulting ad.gebrsicequations. This
replacement may be accomplishedby writing each unlmown intensity func-
tion as the sum of a series of terms, each term being the product of an
unhewn constant coefficient and a down function of the appropriate
variables. If this representation is substituted into the original
equations, the integrations may be performed at once, and a set of equa-
tions in the unknown coefficients results. Ihowledge of the appro-te
solutions of the transport equation makes it possible to choose the
known functions in such a way that &U. but a few of the terms in each of
the equations so obtained are -j the resulting equations are there-
fore amenable to solutionby successive appro-tion. After the coef-
ficients are obtsined, the intensities maybe foundby summing the
appropriate series. It is shown, however, that the coefficiemtw them-
selves contain information of considerable physical.significance; for
some purposes, it may be sufficient to Wow the coefficients im order
to estimate the usefulness of the shield.

ANALYSIS

Assumptions

In each case it is assumed that %he followiug conditions hold:

(1) The elements are homogeneous slabs of finite tld.cknesswith
infinite plane psrallel surfaces.

.—. — — ————



4 IWCA TN 2647

(2) I?onew particles are produced by collisions.

o

“

(3) The systm is in a steady state.

(4) The incident radiation is uniform over the surface and inde-
pendent of the angle measured around the normal but not necessarily
independent of the angle it makes with this normal.

(5) AIJ sources are external to the elements.

Conditions (1) and (4) are essential to the type of anslysis employed
here because they represent restrictions on the geometrical aspects of
the problem which make the resulting system of equations relatively
tractable. The requirement with regardto angular distribtiion contained
in condition (4) is fulfilled if the sources are disposed in a uniform
manner with respect to the shield. The assumptions contsined in con-
ditions (2), (3), and (5) we not essential but sre introduced primarily
to avoid complications in the analysis which would obscure the ideas
presented hereti. In particular, reference 1 deals with the case in
which condition (2) does not hold and reference 2 deals with the case
in which conditions (2), (3), and (5) do not hold.

The Individual ELement

The procedure to be fonowed in simplifying the application of the
semiempiricalmethod is to determine the way in Wch the particles
traverse a single element and to deduce from the results obtained an
appropriate representation for use in this method. More explicitly,
the representation sought is in each case to be obtained from an approxi-
mate solution of the transport equation vtid under certti general
assumptions about the nature of the element. The two cases to be con-
sidered are that in which scattering dominates and an expsmsion in terms
of Legendre polynomials is a~ropriate (approach 1) and that in which
absorption dominates and iteration is appropriate (approach 2). It is
to be emphasized that the expansions thus obtained are applicable in
genersl but are most convenient under the circumstances stated.

Approach 1: I@ansion in Legendre polynomials. - Intbis section
the transport equation is transformed by expressing the dependence on
energy b terms of a new variable q by a Laplace transformation and
by representing the angular dependence in terms of an expansion in
Legendre polynomials. It will be shown that for elastic scattering
the introduction of q simplifies the equations considerably,that
the use of Legendre polynomials is well adapted to the boundary con-
ditions, and that in the csse of multiple scattering only a few terms
of the expansion need be retained. The need for including angular
dependence also becomes obvious.

UY
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The starting point of this discussion is the form of the transport
equation given by Marshals(reference 3, equation (63); see also appen-
dix B of this report) here -specialized
surface-position-independentcase with

can

H
u“

du‘ dW*(u’, v’jz}
o

symbols are defined in appendix A.

Because V does not depend upon

to the ttie-i&dependent and
no internal sources:

*(u,p,z) =

f(~,u-u’) h(u’) (1)

q, the right side of equation (1)
be integrated over q‘ immediately so that it becomes -

where

du‘

J
@’fl(V, @,u-u’)~(u’,@,z)h(u’)

o -1
(2)

‘J
2Yt

fl(!.l,i.1’,u-u’)= o f(~,u-u’) @’ (3)

Equation (1) maybe further simplified by taking its Laplace trans-
form with respect to u. If,,for purposes of simplicity, it is assumed
that X(u) smd h(u) are constsnt, then it is possible to put X(u)=l
(this s&&ts to a ‘&ange in the choice of units for X constant)‘&d
h(u)=l (this amounts to a chsnge in the way f is normalized for con-
stant h); with these changes the equation becomes (see reference 3,
equation (17))

where @ ad F sre definedby

and

--- _ —-—-— ——— ——— —-
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[

w

F’(i.l,p’, ~) = du e-vu fl(lJ,V’,u’)
o

P

(6) -

respectively. In equation (4) the integration over u’ has been p~-
formed by mddng use of the fact that u’ enters fl only throu#
u-u’. The extension to the case where 1 and h. sre not constant is
immediate (reference 3, equation (80)). It is only necessary to expand
each of these quantities in a power series in E:

h= x hj Ed = z Hj e
-ju

J 3

(7)

(8}

where the quantities Aj and Hj sre constants and the j‘s represent -

some set of nunibersof either sign which may be, but are not necessarily,
integers. These expansions need contain only a few terms if X and
h do not V8J?ytoo fad with U. The representation given is not very
adequate if resonance is marked; but the error is not serious for a
narrow resonance band because the chance of a particle attaining an
ener~ within such a band is small. If equations (7) and (8) are sub-
stituted in equation (1) and the Laplace transform is obtained, equa-
tion (1) becomes

P Zfj- +@(.,%,)=
J

1

‘J‘j _l

all-L’F(P,P’,v) * (z,q+j,P’) (9)
S

It is to be emphasized that the validity of equation (9] depends
upon the assumption that u and u1 enter fl only through the com-
bination u-ut. This restriction on fl, While not necessarily always
hoi-, is correct in many cases of physical significance (reference 3,
p. 186), for exS@le, whenever the scattering can be represented as a
classical collision between the incident psrticle and a free particle
at rest. The same result holds in quantum mechanics for the case of
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so-called S-wave scattering, that is, the case when the “wavelength” of
the incident particle is great compared with the range of the scattering
force. In the general
form

case, the function fl csm be written in the

f~= fl(u-u’,u’j (lo)

so that the treatment of this case csn be extendedby expanding fl in

a series in e‘j”’ just as was done in the case where. h(u) was not
Constmt .

In order to complete the formulation of the problem-,it is neces-
sary to specify the boundary conditions. This & %e
as follows. Let 2=0 represent the face upon which
incident and let z=Z represent the opposite face.
tions in question are

@(z,T),p)Lo=A(q,v) I.L~O

The quantity A(q,w) is here an arbitrary lmown

done quite simply
the radiation is
T&n the sondi-

}

(U.)

function of the
appropriate variable8___“Physically, these equations mean that the flux
incident upon the front face of the element is lmown while the flux
incident upon the back face is zero. An tidividual element of the shield
is shown in the following diagram:

.

@(O,TI,I.L)=A(T,v)
for V>O

2=0

2-,z
P for V<O—

Z=z

. -—. .-. . . - -— __ –.——c . -—..—— —.- —.— -.-.—— ---- -— -- —.—
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0

Equations (4) as they stand are still integrsl equations with respect
to p as well as differential equations with respect to z. It is
desirable to transform from this set of integro-differentialequations

.

to a (infinite) set of ordinary linear differential.equations. This g
csm be simply done if 4 and F are expanded in terms of complete set m
of orthogonal functions of v. Marshak (reference 3, equation (65a))
used for this purpose the set of Legendre polyncmdals of p. For the
present problem this is inconvenientbecause the boundary conditions
(equation (Xl} 3mpose a sharp distinction between forward (p > 0)
and backward {p < 0) directions. It is therefore natural to make use
rather of an expansion h which this dichotomy is reflected in the
expansion of the function @ in terms of the variable p. A procedure
in which this is accomplished and in which some of the advantages of
the use of the Legendre polynomials sre retained is
of the representation:

[

m

E (2n+l)qJ;(q,z)Pn(2p-1)
n=o

@(z,q,u) = m

I (&l+l)@Jq,z)P(-2@
n===

based on the use

p>, ()

p<o

(12)

The+ and- superscripts on the expansion coefficients ~
indicate, of course, that they are associated, respectively, with posi-
tive and negative values of p and hence with forward and backward
directions. The coefficientshave thus a significance different from
that to be associated with the uEual expansion in terms of Legendre
Po~ti* (reference4). It is %0 be emphasized,however, that the
number of nodes of the Legendre polynomial of degree n ticreases as
n increasesj and, hence; the larger is n, the greater is the degree
of angulsr assymetry to be associated with rpn. It will be advantageous
for future work to define

(
O<p<lPn(2v-1) _ –

P:(2~-1} = (13)

o otherwise

alla

{

-l<p<oPn(-2P-1) _ -

P;(-2~-1) =

o otherwise

—. .—— —
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With this definition @ may be written

9

.

Q=

It is to be
scripts are

.

.

g{ [ 1}(a+l] Q;(W)P:(2P-1] +qll,z’)q-a.l-1) (14)

noted that two P’s for which the n’s and the super-
not both identical are orthogonal. This is one of the chief

advantages of the expansion. Because of the isotropy of the element, it
is assumed that f depends on 6 and G! Ody through 1~1 and,
therefore, F may be written in’terms of these functions as

F=
~,(~”) { * [+ 1fm, Pn(2p-l]P;,(211’-l)+PJ-2p-l}P;,(-21.l-1) +

[ 1}- (-2~’-l) +P;(-2@)P:,(2p’-l)f&t p~(2P-l)pnf

(15)

This equation serves to define the expansion coefficients f. (These
coefficients have the property that fn,nr = fn,,n.) When equations (14)

and (15) are substituted into the right side of equation (4),there results

~ ~ + @ = x (~+,? {f#i3[&Px211-1) + ,;*P;(-211-lj+
n,n!

f=,
[ 1}@’J-a4 +Q7:(W-1) (16)

where use is”made again of the properties of the Legendr polynomials
(see reference 4). If equation (16) is multipliedby 5(A2P-1) and
the resulting equation integrated over the range -1 ~ v ~1, the fol-
lowing set of differential equations is obtained:

.
—. . ———. . — -----
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.

To this set are to be appended the boundary conditions which here take
the simple form w

where Z is the thiclmess of the element and

(18)

Q:[Z=z in terms of the ~(q). “Generally speaking, for large Z one .

maY expect these quantities to decrease aE n increases in the case
where there is Uttle absorption because multiple scattering enhances
the symmetry. A s@le illustration of this is given by the following

qle:

Exsmple of approach 1: Scatter&g of neutrons by a thick “heavy
shield” without absorption. - When a neutron is scattered by an element
of relatively high atomic weight, the neutron loses very little energy
and the angulsr distribtiion of scattered neutrons is nearly uniform.
As en appro-tion, the change in eneru may be taken as zero and the
angular distribution as uniform so that F is constant. AS it is
assumed that there is no absorption,1? is normalized in such a way
that

J

,

FdP=l (19)
-1

(see equations (3) and (6) and equation (Al) in appendix A). Thus it
follows that, to the appro-tion taken here, F = ~. With the con-

sistent ne~ect of all o.’s for which n exceeds 1, the differential

.

\
, (20)

J

—— ———.—-
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The boundary conditions are

qz=o=A-J-

(21)

J
The dependence on v is suppressed because the value of ~n for a
partic~ q is not related to its value for any other q. These
equations, being a set of linesr differential equations with constant
coefficients,may be solved by the usual methods. As remarked pre-
viously, the feature of interest here is the way in which the element
imposes angulsr uniformity upon the incident radiation when Z is large
compared with 1 (that is,.with A). This effect is demmstrated in the
following approxbnation to the solution in which all but leading terms
are omitted. With such an approxhation, the result may be written as

$tlz=z= 0

I

I
(22)

+

Ih Z=z = 0

The omitted terms are of the order of
Because @ must be positive at z=O,
that Al must be less than one-third

\
is about 0.1 and -(6-4@ is_about
is considerably s-r thsm QOIRO.

emergent flux and ~ is associated with radiation displaying a certain
degree of asymmetry, this confirms the assertion that the shield acts
to promote the uniformity of the radiation. If the next stage of the
calculation performed is employed by assuming that ~ = O for n > 3
and substituting the results of the present appro-tion into the
equations thus obttied for P2 and ~3J it follows that, in accord
with the original approximation, these last are also small.

)

~ (or @ multi@iedbyl /Z.
it follows from equation (14)
~. If it is noted that 7-4+
0.9, it foqows that ~l=o

Because q. represents a uniform

‘I’herequirement that there be no absorption is reflected in the
value of F. In particular, if the absorption were not zero, F would

..—. .---— —.—. - ———. —— ——— —. .- .-— —— --—.. — ——
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be less than 1/2 and Q; would be decreased in ma@tude relative to
the asymmetric terms whose importance would therefore increase. In
adtition, for an element the constituents of which are of lower atomic
weight, the coefficients fmy do not vanish for n! geater than

zero and they also vary with ~. The effect of this dependence is to
increase the nuaib= of scattertngs required to produce the same amount
of @ormity .

Under the heading of approach 1, a proceduYe has been developed for
deaklng with an element h which scattering is the do-t effect. In
particular, it has been assumed that X and h are constant, or nearly
so, snd that the scattering process is of the S-wave type. Under these
circumstancesit follows th t an appropriate representation is in terms

2
of tie ~t~ityn~bers ~n(~)- The expansion thus obtained tdses

account of the sharp distinction between the forward and backward direc-
tions, gives explicit recognition to the expected effects of scattering
in producing angular uniformity by segregathg terms implying different
degrees of angulsr asymmetry, and takes advantage of the simplification
resulting from the use of the Laplace transformation.

*

“

.

Approach 2: Iteration. - Although the expansion discussed in
approach 1 may be used in auy problem, its practical application is
primsxily found in those cases where there is elastic scattering and

.,

where the element imposes a certsln degree of sngulsm uniformity upon
the emergent radiation. In the contrary case where the emergent radia-
tion retains essentially the nonuniformity of the incident flux or
where such nonudformity is imposed, it is convenient to use a formalism
in which the titensity is expressed directly as a function of the angle
and the ener~.

This will be the case if multiple scattering with change in direc-
tion is not an important process. The procedure used here is an iter-
ative one which again shows the importance of inclu@g angular depend-
ence smd which permits direct solution of the transport equation for a
single element under the circumstances indicated.

The relevant transport equation with no scattering leading to
directional changes is (see appendix B)

,

J’ILA+ Q(E) W(E)=ql(E,@@’) dE’ (23)

Here Q is 1P and ql(E,E’) dE is the proportion of radiation of
ener~ E’ degraded into the range between E sad E-ME. The func-
tion ql vanishes for E > Et (no gain of ener~). It maybe noted
that, as this equation stands, p enters only as a psrsmeter. If ~
is written ss

— — .—————
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.

~(E,I.L,z)=
J

T(E,z,E’) ~(E’,l.L,O) dE’
o

equation (23) is satisfied if T fulfills the boundary condition
T(E,Q,E’) = 5(E-E’) and the equation

(24)

@&!Aa
32 J’+Q(E) T(Ejz,E~) = ql(E,E”) T(E”, z,E’) dE” (25)

Et and p are parameters in this equation.

~ nowbe obtain&hyAn approximatesolution of equation (25)
the use of iteration. This approach is especially appropriate because
it includes as a special case the method of breaking the ener~ range
into intervals and replacing the integral on the right side by a sum
essentially employed in reference 1. In order to carry-out the itera-
tion, T is expressed in the form

m

(26)

where T(j) satiafies the bo~dary con~tion
o

T(j) .(E,(),E’)‘b.jo &(E-E’} (27)

!J

represents the contribution to T of psrticles that have started
with ener~ E’ and have been scattered j times. It follows that

and
out

T(j) iS of the order of qlj because the latter

probability of j scattering. Consequently, if
stituted into equation (27) and terms of the same
there results

v

aT(s)(E,z,E’)
az

aT(0)(E,z,E’)

82

is essentially the

equation (26) is sub-
order in ql me equ.ated~

+Q(E) T(0)(E,z,E’) = O I

+Q(E) T(S)(E,Z,E’) = (“-ql(E2E”) T J l)(E1’,Z,IZT) WJ
o

fl

(28)

— . ..— — .— ... ..—.———-— ———



-—— . .

14 NACA TN 2647

*

the solution of which, subject to the boundary condition (27), is
(appendixC)

-Q(e);
T(0)(E,z,E’) = 5(E-E’) e

ql(E>E’)

[
-Q(E’); e-Q(@f

T(l)(E,z,E~)= Q(E)-Q(E,) e - 1 1
rr j -1

H q,(E(s+l),E(s))x /T(j)(E(O~,z,E(3)] =

\ .
#

(-29)

.J. . .d. S=o - I

{

Sj

G
e-Q(E(e))z/p

& Q(E(r))-Q(E(e))e- .

In case two of the Qts we equel, the expression is to be evaluated
by initially treating them as distinct, group- all terms in which
their &Lfference is contained in the denominator, audthen tsking the
limit. In case the set of energies which the particle can lose upon
scattering is discrete or in cxe the inte~al. is approximatedby a
sum, the”function ql can be represented a8 a sum of 5 functions.

If this sum contains t terms, then the series for T bresks off
sfter T(t). (5s depends upon the fact that ql(E,E’) is ZerO for

E larger than E’.) - -

A variation of the preceding treatment can be applied to the case
where th=e exists a scattering process which produces a clumge in both
direction and energy as weKl as the original process which sffects only
the energy. b
(appendixB)

#kz31
az

this case the differential equation may be written

+ Q(E) ~(E,~,z) =
J’k

ql(E>E’) ~(E’,v,z) W31 +
o

.
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.

c’

,,

H
0)
02

where q2(E,w;E’,P’) ~ d~ is the proportion of particles with ener~ El

and direction p’ scattered as a result of the second process so as to
have energies in the rsmge between E and E+dE and tiections in the
rsnge letween p and p+dp. Just as was done in equation (24), V msY
be expressed in the form

where ~ satisfies the boundary conditions

m(E,p,o;E’,Pl) =5(P-P’) 5(E-E’) p>o

T(E,P,z;E’,P’) = o p<o

snd the equation

(32)

~ W(E,LL,Z;E’, IJ’)
az +Q(E) 5(E,v,z;E’,vI] =

J’ u’ql(E,E”) !i(E’’,I-L,Z;Et,pl)dE” + q2(E~v~E’’~wW)~(E’’,v’’,z;,t,L-]’]aE” dp”

(33)

If the second integral.on the right side of equation (33) is small
in comparison with either the second term on the 1* side of equa-
tion (33) or the first integral on the right side of equation (33) then

ithe approximate solution (equation (29)) obtained fgr equation (25 may
be adapted for use as the first approximation for T by applying the
boundary conditions (32). The resultimg function, which maybe denoted

‘) satisfies‘(0)(E,~,Z;Et,V ~asT .

a~(0)(E,p,z;E’,P’)
P az +Q(E) ~(0)(E,p,Z;Et,p’) =

.

n

J ‘(0)(E’’,p,z,ql(E,E”} T .E~,p!) ~t’ (34)

and the boundsry conditions

i?O)(E’’,V,O;E~,V’)= 5(v-I.L’)t5(E-E’) p>cl
.

~(”~(E’’,v,Z;EI2P)=0 ~<o’

—.—. —..—- ——.—- . —..— .-—. —-.— —-
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A better approximation is obtained by putting

where’ do) is as

T = m(”) + ~ m

before and T(l) satisfies the conditions

i?l)(E,V,O;E;V‘)=0 p>”

.

h

(35)

N
al
m

!F(lJ(E,I.L,Z;E’,V’)= o ~<o

If equation (3s) is substituted into equation (33) and if the product
#) -(o)

is neglectedti comparison with q2T , the following equation

is obtained for F(l):

.
&@(E P,z;E*,P’)

P
32

-I-Q(E) #l)(E,p,z;E~,p’) =

J ‘(1)(E’’,v,z,ql(E,E”) T ‘E’,v’) dE” +

Jf

‘(0)(E!r,pi!,z,
~(E,P;E’’,P”) T .E~,pl) ~11 ~11 (36)

This equation in turn maybe treated by iteration. If the symbol

U +0)(E’’,~’’,z;El~Ij~“ @“s(~,P,z;E’,v’) = 132(%-@’,LL”)T

is introduced, a first approximation to #1)
, obtained by neglecting

the first inte~al on the right side, is givenby

+1)
(E, IJ,Z;Er,ILf) =

for I.L>O

for p<O

(37)

—— .
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This may then he

of equation (36)

substituted into the first

and a better approximation
iteration may, of course, be continued’along these general lines,

17

side

The
but

its usefulness is, in genersl, greatly d@inished as the length of the
process is increased. In any case, the early approximationwill.be good
if the contribution from the inte~al involving q2 iS not too l~ge;

that is, if multiple scatterhg with angular deviation does not occur
to any great extent.

It is apparent that in the two

essentially zero) the emergent flux
an element of reasonable thicknessj

cases considered (q2 small or

will depend strongly on angle for
indeed~ for a sufficiently thick

absorber, it follows from the form of T(o) that this flux iS -y

concentrated within a cone of half-mgle of order ~~ where the
value of Q to be used is a typicsl one. Consequently, an analysis
h which the angular dependence is given by specifying the amount of
radiation within each of a set of ranges into which p is divided is
appropriate.

The results obtained here serve to elucidate the case in which
scattering with angular deviation is not a very significant process so
thd it may be treated as no more than a perturbation. An exact solu-
tion is obtained by the iteration method for the case where the direc-
tion of motion of the psrticles is unchanged; but, tiess Q and ql

have a particularly simple form, its application is obviously inconvenient
where there is much multiple scattering for the reason that, under such
circumstances, a large number of terms must be retained in the series
for T.
ing with

The

The process-for dealing with the perturbing effects of scatter-
-W deviation is described.

&uiem@ricd Method

results of the previous section, entitled “Individual Element,”
find application to the treatment of shields by amodi?ication of the
semiempirical.method. In this formalism, a shield intercepting a flux
of particles is to be represented in the.following fashion. Radiation
of an titensity independent of position on the face fsXls upon the first
of a set of n plane parallel elements. As a result, there is ticident
upon both faces of each element a flux of radiation; consequently, there
emerges from each face a certah quantity of radiation. Let Ji(E,w)

represent the number of particles with energy E and direction p per
unit range of E

unit area of the

flux of radiation

grsm depicts the

per unit range of v per unit time incident upon each
~th element. Similsrly, let Ii(E,v) represent the

emergent from the ith element. The following dia-
~th element of the shield:

. --- .- .—.- --—. ——.— -—--——- —. —-.—— —-. —— .—-— —
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.

Ii(E,I.L)

&e = Cos-1 Jl,

j.l>o—

I e = Cos -1 p,\

L

Ii(E,K)

d e = Cos-1 P>

Positive p indicates radiation incident upon the front face, and neg-
ative p, that incident upon the rear face. For I, then, negative p
is associated with radiation leasdng the front face and positive p,
that leaving the resr face. The manner in which the presence of the
element modifies the radiation is given by the equation

uIi(E,I.L)= q(E,wI+%] J&+L) % % (38)

where ~(E,v;pi,Ei) dE @ represents the proportion of particles with

ener~ Ei ‘h elementand direction pi which is modifiedby the i
so as to emerge with energy between E and E+dE and direction between
v and U+ap.

In addition, the Its and J~s satisfy the following equations:

Ii(E,I-L)= Ji+l(WL) p>o

Ji(E,p) = Ii+l(E,u} ~<o 1(39)

Jn(E,FL)= O p<o

●

N
w
m
0-2



NACA TN 2647 19

~d ll(U) is known for p >0. It follows from symmetry considera-

tions that

The previous set of equations is, as noted in the introduction,best
treated by some method of approximation. In reference 1 this was done
by replacing the integrsl by a sum; as shown previously (see remarks
following equation (37)), this is a~ropriate where the dominant proc-
esses are absorption and loss of ener~ without scattering.

Howeverj in the case wheh elastic scattering is of primsxy import-
ance, another procedure suggests itself (see Approach 1). In this case
it is natural to expand I and J in terms of the polynomials

P~(&2p-1] and to use the Laplace transforms of the coefficients so.

obtained as the intensity numbers. This may be done by defininn the
quantities

P~(-2p-1) e-qu Ii(E,v) @ dE
-1

(41)

with analogous expressions for ‘@ and ~-. In terms of these quanti-
ties, equations (38) snd (39) become, respectively, when X is inde-

and

1(42)

1

(43)

. ..—. — - .. —— -—- — — .---— — .—— -—-
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(44)

and .

The equations here contain q only as a parsmderj beca&se the element
has the effect of produc5ng a distribution of intensity nesxly inde-
pendent of p, it should be sufficient to~onsider only a few values
of n. In case the mean free path is not constant, the right side will
depend on other values of ~ besides the one appearing on the left
side (see equation (7)). In this case, if the average rate of varia-
tion over a wide region is not too large, it is possible to apply suc-
cessive approximation by first omitting these extra terms. If this is
impractical, the best procedure is simply to expand I and J in
terms of Legendre polynomials as before, but with the coefficients fuuc-
tions of energy rather than of q. The integrals may then be replaced
by sums as in reference 1.

Even in the case in which the expression in terms of the Laplace
transform expedites the soltiion, there remains the problem of inter-
pret~the results obtained, which wilJ-give quantities He ~~(~).

The correspondingfunction of u and p may %e obtained.by performing
the inverse Laplace transformation with regard to ~, multiplying the
resulting function of u by (2n+l)P~, aud summing over n. Each of
these procedures, and particularly the first, is likely to be quite .
tedious. It is therefore desirable to avoid the”actual calculation;
and this may sometimes be tine because, u the fo120wing considerations
show, the quantities ‘%( ~) themselves conts5n considerable informa-
tion of physical sigmlficance. If the dependence on n and p is sup-
pressed, the relation between I end I is given by

— —-
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.

,

Z(I-J)= r‘e-Vu I(u) du (45)
Jo

Here I(u) maybe taken as representing the rate of flowof psxticles
per unit area per unit time per unit range of u. In view of the con-
nection between u and E, I(q) may be rewritten in the form

Thus, ~(0)_ is the rate of flow of particles per unit
unit time, ~(l) is the average rate of flow of energy

(46)

area per
per tit area

per unit time, etc. The quantity I(v) therefore finds interpretation
in terms of particle current density, of energy current density, and of
the moments of the energy flow. If I(u) itself must be @own, the
values of u of interest will usualJy be large because the important
question will be whether the particles have been sufficiently slowed
down to reach am absorption band in a succeeding element. In this case,
use may be made of known methods for approximating the inverse trans-
formation for large u (see reference 3, p. 204). If the dependence
on n and p is now considered, it follows in a similar fashion that
much q be deduced about the directional flow of particles directly
from ~. Thus the total current in the forward direction is (from
equation (46)): .

ro P T- P
LJ I(E,v)p @ dE= ~ (2n+l) %(O) I Pn(2P-l)V @
~o

(47)

It is therefore possible to
bution without transforming
ables (P,E).

learn a good deal about the particle distri-
from the vsriables (njq) to the vari-

.

of the section “IndividualElement” haveUp to now, the results
been considered from the viewpoint of their significance in the solution
of a problem involving a number of elements whose separate effects upon
the incident radiation have been determined experimentally. However,
the results obtained in approach2 of that section may also be used to
determine, to a good approximation,the effect of a tti element of a
given material for which the constants associated with each possible

.

—— —..- — — — —-———-— —
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process sxe known. The saniempiricalmethod may then be used to obtain
the required data for thick shields. Because the term “thin”, as used
herein, means only sufficientlythin that multiple scattering need not

0

be considered, it would appear that this procedure would provide a con-
venient and reasonably fled.ble way of obtabinng the needed constauts
for a variety of elements.

CONCLUDING REMARK8

The problem of a layered shield consisting of a number of plane
parallel elements of infinite extent but arbitrary thiclmess has been
treated. By use of the transport equation, an explicit appro-te
solution has been obttied for a single element for the case where mul-
tiple scattering with angular deviation is not dominant and the form
of the solution investigated in the case where multiple scattering with
mar detiation is the principal effect. b each case,an expansion
is given for the sngular dependence”which is well suited to the boundary
conditions of the problem and -israpidly convergent. It is pointed out
that the use of an expansion of this sort and of the Laplace trausform
with regard to ener~ (where scattering with angular deviation is dom-
inmt) should considerably reduce the labor in a semiempirical treat-
ment of shielding. On the other hand, the semiempirical approach may
be used to exbend the s-e scattering result to a thicker element
where multiple scattering is of importance.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics

Cleveland, Ohio, August 8, 1950

—
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m
(n
to
N

.

SYMEOL5

The fold.owingsynibolsare used in this report:

%(~) expansion coefficient for A(v,P) in series

A(v,P) valueof 4 at z=O for p>O

E ener~ of a particle

nuudmum ener~ of any particle entering shield

F(p,v’,q) Laplace transform with respect to u of fl(ll,ll’)u)
>

J
2fi

fl(P#’#-u’) = f(~o,u-u’] d~’
o

f(j.lo,u-u’) proportion of particles with direction (0’,cp’) and
energy E‘ scattered through the angle @ into the .
direction (G,q) with energy E per tit solid angle

Hj

h(u)

per unit range of u

expansion coefficient for expression of F

of P~(2p-1), P;1(2P-1), Pj(-2P-1), and

dividedby (Zn+l)

‘j” ~~~ion h(u) =coefficient of e

“U
is(u)

in terms

P:t(-2@

z Hd e
-ju

j

coefficient of Ej in expansion h(u) = ~ hjEj
3.

number of particles per unit time per unit area leavlng

ith element of shield with ener~ E and angle
-1

Cos p per unit range of energy snd unit range of p

-. - --- .- —..--——. — -..— —-— —-- ——— — ——— ---——— — —.. ——.—— ---



24 NACA TN 2647

,,

-%(V)

number of particles per unit time per unit area incident

upon it= element of shield with energy E and
angle cos-l P per unit range of energy and unit
range of p

N’
o 1

Pn(2p-l)e-7V Ji(E2~) @ dll!
‘Lo

o

H
o

Pn(-2p-l)e-Vp Ji(E,p) @ dE
‘&-l

~(E,@;~,~) W elementproportion of particles incident upon i
whose original ener~ is ~ and direction, &

scattered into ener~ X per unit range of E and
direction w per unit range of p

f D
o

&t (d = (ti’+1) Pn(2~-l)Pn,(-2~i-lje-nP~(E,~;&,&} ~ @dE
&o-l

.

Pn(x) Legendre polynomial of degree n

—— —
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IN

E
CD

P:(zll-1)

P;(-2p-1)

Q(E}

ql(E>E’)

q2(EjPyE’#)

S(E,V,Z;E’,V’)

T(E,z,E’)

T(E,I.L,Z;Er,P’)

u

z

z

5(X)

{

Pn(2p-1) p~o
=

o p<o

{

Pn(.2@ ~< o—
=

o p>o

proportion of particles with ener~ Et scattered fito
state with energy E per unit range of E

proportion of psrticles with angle COS-l p’ and
energy El scattered into state with angle cos-1 ~

and energy E per unit range of E per unit range
of p

= U q2(E,p;E’’,p’’)@(,#,z;Ez,p’,p’) dE” ~“
-1 0

proportion of particles with energy Et ~incident upon
face of element reaching ener~ E per unit range E
upon penetrathgto depth z for q2 = O

proportion of particles with energy E’ and @e

Cos‘1 p’ incident upon surface of layer reach~~
energy E per unit range of E and angle cos I.L
Per unit range of p upon penetrating to depth z

J‘h approximationto T

J
th

appromtion to Z

E_

‘E

thiclmess of layer

distance of point inside layer from the front face of
the layer

Direc delta function

— ..— .—— .
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.

Sij

T

Aj

x(u)

fionecker delta

variable of Laplace transform

angle between direction of scattered particle and Mrec-
tion of particle before scattering

colatitude measured with respect to mxmal. to face of
shield upon which radiation is incident

coefficient of e-ju in expansion ‘(u) = ~ As e-ju
j

total mea free path

coefficient of EJ in expansion h(u) = z Aj Ej
3

scattering mean free path

costie e

cosine @

Ls@ace transform of $ with respect to u

longitude about normal to smface

expansion coefficient b expression for @ h terms of

(2n+l) &(@.1-1)

nuder of particles per unit time per unit srea per
unit range of E ~1= unit soud angle of energy E

and direction cos v and location z divided by
A(U)

*(u,p,z] nunib= of particles per unit ttie per unit area per
unit range of u per unit sol.i~angle of ener~ E,

direction

Q solid angle

All integrals for which
over the entire range of the

a
f?
Cu

Cos‘1 p, and location z divided by A(u)

no lhits me specified sre to be extended
variable concerned.

— ——
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APPENDIX B

DERIVATION AND SIGNIFICANCE OF TRANSPORTEQUATION

5e transport equation simply expresses the fact that any particle
entering a given region must, in the steady state, be absorbed, be 8cat-
tered, or else leave the region unchanged, and that any psxticle lea-.
the region must, in the steady state with no internal sources, either
be replaced by a llke particle entering the region or else be produced
when a particle with a different nmmentun is scattered. In order to
state this in mathematical terms, it is necessary only to consider the
balance within a region R bounded by a surface S. The followtng
contributions and losses oacur:

The number of particles with energies between
E= &e-” and ~=-

E and E+dE (where
E du) mov@g in directions lying within a cone

of solid angle d$l around the direction specified by the unit vector ~
which enter R through the surface S per unit the is

P

where @ is a vector element of area. Tbis holds because k~+ is
the vector current density of particles per unit time per unit area per
unit solid angle per unit range of u.

The rate at which
witltln R is

.

psrticles of this ener~ and direction disappear

r
where dv is an element of
the linear rate of decrease
density divided by the mean

J ~dvdudQ
R

volume’. This follows from the fact that
of the density of particles is simply the
free path and that the time rate of decrease

of density is equal to the linear rate multiplied by the speed; but this
last product is just ~.

The rate at which particles with other momenta are scattered within
R so aE to achieve an energy between E and+ E+dE snd a direction
within the solid angle dQ centered around n is

.—. —----- ————— .-. .—— _.._ . .. . . _ —— ————-————— ---
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.

&&J dv$(u’,p’,z)f(wO,u-u’)h(u’) du dQ

This maybe seen as fo~ows: h(u’) f(~,u-u’) du d9 is the Proportion

of particles either absorbed or scattered which origilly have an energy
%’ ~a a direction at and Which are scattered so as to achieve an
ener~ ly5ng in the rsmge between E and E+dE and a ti~ction lying

within the solid angle dQ centered sround i?. Thus when this product
is multipliedby * and integrated over all directions d$2’,over u’
between O and u (f=o for u <u’ because of the assumed degrada-
tion of energy), and over R, the desired rate i% obtained. A few other
r~ks about f may be in order: (1) Eecause every scattered psr-
ticle must attti some tiection snd ener~j f satisfies the equation

w

H
,

au m f(p@-u’) = 1
Ut

(Bl)

(2) The dependence of f upon u-u’ results from the assumption of
classical elastic or quantum mechanicsll S-wave scattering (that is,
scattering symmetricalwith regard to a coordinate system located at
the center of gravity of the system participating h the scattering
collision). (See reference 3; pp. 187, 188.)

The resulting equation for balance is:

If the left side of equation (B2) is converted to a volume integral by
Gauss~s theorem and the titegrands in the integrals over R occurring
h the equation set equal in view of the fact that R is arbitrary,
the foil.owtngresult is obtained:

(B3)

.

.

.

.
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Because ~ depends on position only through z and because the com-

ponent of % in the z direction is cos e, ~OVV reduces to

Cos e ~ and equation (B3) becomes identicslwithequation (l).
bz

Similarly, equation (23) is obtained by writing ~ as a function
of E rather than u and by assuming that a particle does not change

P

direction on scattering so that lf(~,u-u,)h(ui)ti, becomes

J’
u

C11(W)8(P-P’) m’
.

2Yt
Equation (20) is the ssme as equation (23)

r
except that in equation (20) Jf(~,u-u’) h(u:) du~ is replacedby

the more general function

w

The ql term represents all the scattering without angulsr deviation,

as before, and the q2 term allows for an additional scattering process

which produaes a chsn.gein ~ection.

— . —. —-——. .—. —— ———— —— _...— .—-z --- .——.—.
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.

APPENDIX c

DEKCVATIOFJOF EQUATIONS (29)

It may be verified by direct substitutionthat the expressions for

T(”l snd T(l) ‘givenby equations (29) satisfy equation (28) subject

1

to condition (27 . For values of j greater than one, the correctness
of equations (29 may be checked by induction. Because the general

expression given for T(j) is correct for ~ =1, it remains onl to

show that, if equations (27) and (28) are used to compute $T(j+l on

the assumption that T(j) is givenby equations (29), then the resul.t-

@3 expression for ~(j+l) agrees with that obtained from equa-

tions (29). The formal solutionof eqmtions (27) and (28) for T(j+l)

with T(j) @ven is

(cl) .

Here T(j) stmds for the function specified in equations (29}; when the
exp~cit substitutions perfozmed, the right side of equt on (Cl)

?jtakes the formof a multiple integral with respect to dlil1 . . . dE(J-1).
The integrsad ofthis-multiple integral msybe written, upon integration
with respect to ~, as

In order that this result agree with equation (29) it is necesssry
only that the following relation hold:

. —



NACA TN 2647 31

--

x
[ 1[Idr%Q(E(r))_Q(E(n)) lQ(E(n)) _Q(E(j+l})l

r#n

Equation (C3), ~ turn, is valid if the follow3ng

-1

(C3)

e~ression vanishes:

(C4)

Equation (C4), however, is just a polynomial of degree (j-l] or less

in Q(E(j+l)) which vanishes whenever Q(E(j+l~) takes on one of the

values Q(E(O~), . . Q(E(j~) and, hence must be identically zero.
This completes the %e~i~ication of equations (29).
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